Pseudomonas aeruginosa induces type-III-secretion-mediated apoptosis of macrophages and epithelial cells.
نویسندگان
چکیده
Pseudomonas aeruginosa is a gram-negative opportunistic pathogen that is cytotoxic towards a variety of eukaryotic cells. To investigate the effect of this bacterium on macrophages, we infected J774A.1 cells and primary bone-marrow-derived murine macrophages with the P. aeruginosa strain PA103 in vitro. PA103 caused type-III-secretion-dependent killing of macrophages within 2 h of infection. Only a portion of the killing required the putative cytotoxin ExoU. By three criteria, terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling assays, cytoplasmic nucleosome assays, and Hoechst staining, the ExoU-independent but type-III-secretion-dependent killing exhibited features of apoptosis. Extracellular bacteria were capable of inducing apoptosis, and some laboratory and clinical isolates of P. aeruginosa induced significantly higher levels of this form of cell death than others. Interestingly, HeLa cells but not Madin-Darby canine kidney cells were susceptible to type-III-secretion-mediated apoptosis under the conditions of these assays. These findings are consistent with a model in which the P. aeruginosa type III secretion system transports at least two factors that kill macrophages: ExoU, which causes necrosis, and a second, as yet unidentified, effector protein, which induces apoptosis. Such killing may contribute to the ability of this organism to persist and disseminate within infected patients.
منابع مشابه
فراوانی ژنهای کد کننده سیتوتوکسینهای exoT، exoY، exoS وexoU سیستم ترشحی تیپ 3 در سودوموناس آئروجینوزا جدا شده از بیماران سوختگی
Background and Objective: Pseudomonas aeruginosa is an opportunistic pathogen causing nosocomial burn infections. Disease results from the production of numerous virulence factors, some of which are injected directly into the eukaryotic host cells via the type III secretion system (T3SS).The aim of this study was to determine the prevalence of cytotoxins encoding exoT, exoY, exoS and exoU genes...
متن کاملMacrophages and epithelial cells respond differently to the Pseudomonas aeruginosa type III secretion system.
The multiple effects of Pseudomonas aeruginosa type III secretion have largely been attributed to variations in cytotoxin expression between strains. Here we show that the target cell type is also important. While lung epithelial cells showed significant changes in morphology but not viability when infected with P. aeruginosa, macrophages were efficiently killed by P. aeruginosa. Both responses...
متن کاملThe Pseudomonas aeruginosa Type III secretion system plays a dual role in the regulation of caspase-1 mediated IL-1β maturation
Pseudomonas aeruginosa is an opportunistic bacterial pathogen that forms a serious problem for immunocompromised patients and also the leading cause of mortality in cystic fibrosis. The overall importance of a functional Type III secretion system (T3SS) in P. aeruginosa virulence has been well established, but the underlying mechanisms are still unclear. Using in vitro infected macrophages as w...
متن کاملEffector ExoU from the type III secretion system is an important modulator of gene expression in lung epithelial cells in response to Pseudomonas aeruginosa infection.
Pseudomonas aeruginosa is an important pathogen in immunocompromised patients and secretes a diverse set of virulence factors that aid colonization and influence host cell defenses. An important early step in the establishment of infection is the production of type III-secreted effectors translocated into host cells by the bacteria. We used cDNA microarrays to compare the transcriptomic respons...
متن کاملPseudomonas aeruginosa infection of airway epithelial cells modulates expression of Kruppel-like factors 2 and 6 via RsmA-mediated regulation of type III exoenzymes S and Y.
Pseudomonas aeruginosa is an important opportunistic pathogen which is capable of causing both acute and chronic infections in immunocompromised patients. Successful adaptation of the bacterium to its host environment relies on the ability of the organism to tightly regulate gene expression. RsmA, a small RNA-binding protein, controls the expression of a large number of virulence-related genes ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Infection and immunity
دوره 67 10 شماره
صفحات -
تاریخ انتشار 1999